PERRY-RHODAN-Kommentar 2139


HALB- UND SONSTIGE (HYPER-)RÄUME (I)


Die Erweiterung des physikalischen Gesichtsfeldes von der Dreidimensionalität zum vierdimensionalen Raum-Zeit-Kontinuum hatte eine Revolution der Naturwissenschaften ausgelöst. Die nächste Erweiterung, der Blick in den fünfdimensionalen Hyperraum, war der Menschheit infolge eines glücklichen Zufalls, der Begegnung mit den Arkoniden, sozusagen geschenkt worden. Die Entdeckung des Niemandslandes zwischen den Dimensionen jedoch, die durch das Verschwinden von Wanderer ausgelöst wurde, war eine Sensation allein deswegen, weil niemand je damit gerechnet hatte, dass ein Halbraum, wie Atlan das Phänomen nannte, zwischen den Dimensionen existieren könne. (PR-Roman 69)

Durch dieses Ereignis Ende April 2042 alter Zeitrechnung sowie die Beobachtung des ebenfalls den Halbraum nutzenden Triebwerkkonzepts der Druuf eröffnete sich den Galaktikern eine Erweiterung der hyperphysikalischen Sichtweise. Ende Dezember 2043 gelang es, ein Druuf-Überlichttriebwerk zu erbeuten und einen Druuf gefangen zu nehmen, der zur Technik seines Volkes befragt werden konnte. Schon nach vier Wochen war das Grundprinzip ausreichend exakt erkannt.

Um jedoch von diesem zum praxisreifen Aggregat des »Kalup’schen Kompensationskonverters« zu kommen, bedurfte es fast sechs Jahrzehnte Forschung und eines Genies wie Professor Doktor Arno Hieronymus Kalup. Mit dem Halbraum – genauer dem »Halbraumeffekt« – waren nämlich Aspekte verbunden, die über die bisherige, arkonidisch geprägte Hyperphysik hinausgingen und in vielerlei Hinsicht ganz neue Ansätze erforderlich machten.

Die nach Kalup benannte neue Frequenzeinheit des hyperenergetischen Spektrums und die damit verbundenen Konsequenzen spielten ebenso eine Rolle wie Kalups Ausformulierung eines Modells der Paralleluniversen sowie seine Überlegungen zu den Eigenschaften des Howalgoniums und anderer Hyperkristalle. Erst die Kombination dieser Erkenntnisse lieferte den theoretischen Hintergrund zum Verständnis des Halbraums, hatte allerdings Auswirkungen auf die Vorstellung vom Hyperraum an sich, dessen Erforschung auch heute längst noch nicht abgeschlossen ist.

Wenn wir von der dimensionsgeometrischen Betrachtung ausgehen, ergibt sich, dass »der Hyperraum« an sich nicht irgendwo abseits, drunter oder drüber »liegt«, sondern dass unser Universum zu ihm gehört und sich mitten in ihm befindet (PR-Computer 1588) – genau wie die zweidimensionale Kugeloberfläche untrennbar Bestandteil der dreidimensionalen Kugel ist.

Was »der Hyperraum« nun genau ist, welche Dimensionalität, Eigenschaften und Verhaltensweisen ihm zugewiesen können oder müssen, ist mit diesem Beispiel noch keineswegs definiert. Als problematisch erweist sich nämlich schon, dass sich die Fachterminologie von Mathematikern von denen der Physiker unterscheidet – und beides wiederum nicht mit der Alltagssprache identisch ist.

Bereits eine »durch Materie vierdimensional in sich gekrümmte Raum-Zeit-Struktur« erweist sich hier als Stolperstein. Gern wird zur Veranschaulichung obiges Kugelmodell herangezogen, um die Krümmung und die Expansion des Universums zu verdeutlichen. Verbunden damit ist der ebenso nahe liegende wie falsche Schluss, dass die Krümmung dann ja wohl zwangsläufig in einer fünften Dimension stattfinde, weil die Kugeloberfläche in der dritten Dimension gekrümmt und in diese eingebettet ist.

Mathematisch gesehen erfordert diese Krümmung jedoch keine höhere Dimension, weil sie zunächst »nur« eine abstrakte mathematische Eigenschaft ist, die durch »Krümmungsformen« oder den »Krümmungstensor« beschrieben wird. Spricht der Mathematiker von der »Krümmung der Raum-Zeit«, meint er die so genannte innere Krümmung, die deshalb auch als innere Eigenschaft der Raum-Zeit aufgefasst wird.

Vorbild sind zwar durchaus Flächen im dreidimensionalen euklidischen Raum, doch das wesentliche bei der Differentialgeometrie ist, dass man sich von speziellen Koordinaten und irgendwelchen Einbettungen trennt. Gäbe es für die vierdimensionale Raum-Zeit einen »realen« Einbettungsraum, würde für die Krümmung die Erweiterung um nur eine Dimension nicht ausreichen, wie irdische Mathematiker schon vor der Begegnung mit den Arkoniden gezeigt haben (Einbettungssatz von H. Whitney). Stattdessen müssten sechs weitere Dimensionen eingeführt werden, um sie zu einer »vierdimensionalen Oberfläche« in einem zehndimensionalen Welt-Raum werden zu lassen, der dann wieder euklidisch wäre ...

Dieser Zusammenhang war natürlich auch den arkonidischen Wissenschaftlern bekannt. Dass der Hyperraum aber dennoch im Allgemeinen nur als »fünfdimensional« umschrieben wurde, hing mit der »Hypermathematik« zusammen, für die es in dieser Form zunächst kein Beispiel gab. Oder wie es Perry Rhodan einmal formulierte: Gott schütze die irdische Mathematik. Die arkonidische ist so weit fortgeschritten, dass sie für eine Hyperschwingung nur einen ganz simplen Ausdruck findet, den man kaum weiter zerlegen kann. Die irdische dagegen tut sich schwer, wenn sie den Vorgang erklären will. (PR-Roman 16)

Die vor allem von Kalup vorangetriebene Kontroverse entzündete sich an der Definition dieser »rein fünfdimensionalen Parameter«, die eine »Vereinfachung« der ursprünglich n-dimensionalen Ausgangsbedingung waren: Mussten sie »räumlich fünfdimensional« behandelt werden oder »räumlich vierdimensional plus Zeit«?

Die Flüche zu diesem Thema füllen etliche Speicherkristalle. Übrigens eine interessante Fragestellung für eine empirische Untersuchung: Proportionales Ansteigen der Deftigkeit von Ausdrücken im Verhältnis zur Komplexität der gestellten Aufgabe, Algorithmen arkonidischer Hyperphysik sachgerecht anzuwenden. Die inoffizielle Chronik des Terrania Institute of Technology zeigt, dass Kalup über Jahrhunderte Platz eins belegte ...

Rainer Castor